INO has developed a number of hermetic vacuum packaging technologies for MEMS devices based on metallic and ceramic headers. Processes are performed in state-of-the-art semi-automated vacuum furnaces and systems that allow for activation of thin film getters. The ceramic LCC vacuum packaging technology can accommodate uncooled bolometric detectors and other MEMS devices that require a vacuum environment below 10 mTorr. For temperature-sensitive devices, a low temperature process can be used (<175°C). INO’s solid expertise in vacuum technology allows to adapt the vacuum sealing technology to specific device requirements. INO also offers short-series production and technology transfers.

HERMETIC VACUUM PACKAGING

Ceramic LCC Packages

INO has developed a number of hermetic vacuum packaging technologies for MEMS devices based on metallic and ceramic headers. Processes are performed in state-of-the-art semi-automated vacuum furnaces and systems that allow for activation of thin film getters. The ceramic LCC vacuum packaging technology can accommodate uncooled bolometric detectors and other MEMS devices that require a vacuum environment below 10 mTorr. For temperature-sensitive devices, a low temperature process can be used (<175°C). INO’s solid expertise in vacuum technology allows to adapt the vacuum sealing technology to specific device requirements. INO also offers short-series production and technology transfers.

CERAMIC LCC PACKAGES

APPLICATIONS

- LWIR imagers and sensors
- Various MEMS devices such as:
 - Accelerometers
 - Resonators
 - Micromirrors

BENEFITS

- High productivity due to batch processing
- Low-cost
- Compact size
- Fluxless technology
- Compatible with temperature sensitive devices
- Flexibility in package geometry, window materials and solder alloys
- Integrated pressure sensors for cavity pressure monitoring

<table>
<thead>
<tr>
<th>Ceramic LCC Package</th>
<th>Ceramic LCC Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 pins</td>
<td>116 pins</td>
</tr>
</tbody>
</table>

R&D CONTRACTS – PROTOTYPING – PREPRODUCTION

SHORT-RUN PRODUCTION – TECHNOLOGY TRANSFERS
HERMETIC VACUUM PACKAGING

Ceramic LCC Packages

TYPICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>CERAMIC LCC 68</th>
<th>CERAMIC LCC 116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>Leadless Chip Carrier (LCC)</td>
<td>Leadless Chip Carrier (LCC)</td>
</tr>
</tbody>
</table>
| Footprint | External size: 24 x 24 mm
Cavity size: 15.8 x 15.8 mm
Cavity depth: 1.3 mm | External size: 32.3 x 32.3 mm
Cavity size: 23.2 x 23.2 mm
Cavity depth: 1.52 mm |
| Number of pins | 68 | 116 |
| Window | Germanium and Silicon (Antireflection coating on request) | |
| Getter | SAES PaGeLid | |
| Pressure | <10 mTorr | |
| Max. process temperature | 175°C or 285°C | |
| Throughput | 12 packages/run | 9 packages/run |
| Hermeticity yield | > 90% | |
| Package reliability* | Shock: MIL-STD-810 method 516
Vibration: MIL-STD-810 method 516
Thermal cycling: MIL-STD-810 method 501
Temperature/humidity: GR-1209-CORE | In progress:
Shock: MIL-STD-810 method 516
Vibration: MIL-STD-810 method 516
Thermal cycling: MIL-STD-810 method 501
Temperature/humidity: GR-1209-CORE |

*175 °C bonding process reliability under progress

INO is a world-class center of expertise in industrial applications for optics and photonics, and a leading technology developer and provider of MEMS and MOEMS technologies.

INO
2740 Einstein Street, Québec City, Québec, G1P 4S4 Canada